SSC和SCC腐蚀试验
对SCC的敏感性与渗透到钢材内的氢的量有关,这主要与pH值和水中的H2S含量这两个环境因素有关。典型地,人们发现钢中的氢溶解量在pH值接近中性的溶液中最低,而在pH值较低和较高的溶液中较高。在较低pH值中的腐蚀原因是因为H2S,反之在高pH值中腐蚀是因为高浓度的二价硫离子。若高pH值溶液中存在氰化物能够加剧氢渗透到钢材中。目前已知钢材对SCC的敏感性随H2S含量(例如H2S在气相中的分压,或液相中的H2S含量)的增加而增大。H2S含量为1ppm这样小浓度的水中也发现对SCC有敏感性。
对SCC的敏感性主要与材料两种物理参数有关硬度和应力水平。随着硬度的增加钢对SCC的敏感性也增加。通常对用于湿硫化氢环境的碳钢压力容器和管道不考虑SCC,因为它们具有较低的硬度(强度)。然而,焊接后的焊缝熔合区和热影响区具有高的残余应力。高的残余拉应力与焊缝结合增加了钢对SCC的敏感性。焊后热处理能够有效地减少残余应力,焊缝熔合区和热影响区的回火(软化)处理也有同样的效果。对每英寸厚度在大约1150℉(621℃)下保温一小时(最少一小时)的热处理方法被证明是一种对碳钢有效的防止腐蚀性开裂的消除应力热处理方法。对低合金钢有时需要更高的温度。控制硬度和减少残余应力被认为是防止SCC的方法,在NACE RP 0472中有详细描叙。